TY - JOUR KW - AnnualReport2024-25 KW - comparative research KW - data sharing KW - database KW - Macaca KW - primates KW - repository KW - social networks KW - team science AU - Delphine De Moor AU - Macaela Skelton AU - MacaqueNet AU - Federica Amici AU - Malgorzata Arlet AU - Krishna Balasubramaniam AU - Sébastien Ballesta AU - Andreas Berghänel AU - Carol Berman AU - Sofia Bernstein AU - Debottam Bhattacharjee AU - Eliza Bliss-Moreau AU - Fany Brotcorne AU - Marina Butovskaya AU - Liz Campbell AU - Monica Carosi AU - Mayukh Chatterjee AU - Matthew Cooper AU - Veronica Cowl AU - Claudio De la O AU - Arianna De Marco AU - Amanda Dettmer AU - Ashni Dhawale AU - Joseph Erinjery AU - Cara Evans AU - Julia Fischer AU - Iván García-Nisa AU - Gwennan Giraud AU - Roy Hammer AU - Malene Hansen AU - Anna Holzner AU - Stefano Kaburu AU - Martina Konečná AU - Honnavalli Kumara AU - Marine Larrivaz AU - Jean-Baptiste Leca AU - Mathieu Legrand AU - Julia Lehmann AU - Jin-Hua Li AU - Anne-Sophie Lezé AU - Andrew MacIntosh AU - Bonaventura Majolo AU - Laëtitia Maréchal AU - Pascal Marty AU - Jorg Massen AU - Risma Maulany AU - Brenda McCowan AU - Richard McFarland AU - Pierre Merieau AU - Hélène Meunier AU - Jérôme Micheletta AU - Partha Mishra AU - Shahrul Sah AU - Sandra Molesti AU - Kristen Morrow AU - Nadine Müller-Klein AU - Putu Ngakan AU - Elisabetta Palagi AU - Odile Petit AU - Lena Pflüger AU - Eugenia di Sorrentino AU - Roopali Raghaven AU - Gaël Raimbault AU - Sunita Ram AU - Ulrich Reichard AU - Erin Riley AU - Alan Rincon AU - Nadine Ruppert AU - Baptiste Sadoughi AU - Kumar Santhosh AU - Gabriele Schino AU - Lori Sheeran AU - Joan Silk AU - Mewa Singh AU - Anindya Sinha AU - Sebastian Sosa AU - Mathieu Stribos AU - Cédric Sueur AU - Barbara Tiddi AU - Patrick Tkaczynski AU - Florian Trebouet AU - Anja Widdig AU - Jamie Whitehouse AU - Lauren Wooddell AU - Dong-Po Xia AU - Lorenzo von Fersen AU - Christopher Young AU - Oliver Schülke AU - Julia Ostner AU - Christof Neumann AU - Julie Duboscq AU - Lauren Brent AB - There is a vast and ever-accumulating amount of behavioural data on individually recognised animals, an incredible resource to shed light on the ecological and evolutionary drivers of variation in animal behaviour. Yet, the full potential of such data lies in comparative research across taxa with distinct life histories and ecologies. Substantial challenges impede systematic comparisons, one of which is the lack of persistent, accessible and standardised databases. Big-team approaches to building standardised databases offer a solution to facilitating reliable cross-species comparisons. By sharing both data and expertise among researchers, these approaches ensure that valuable data, which might otherwise go unused, become easier to discover, repurpose and synthesise. Additionally, such large-scale collaborations promote a culture of sharing within the research community, incentivising researchers to contribute their data by ensuring their interests are considered through clear sharing guidelines. Active communication with the data contributors during the standardisation process also helps avoid misinterpretation of the data, ultimately improving the reliability of comparative databases. Here, we introduce MacaqueNet, a global collaboration of over 100 researchers (https://macaquenet.github.io/) aimed at unlocking the wealth of cross-species data for research on macaque social behaviour. The MacaqueNet database encompasses data from 1981 to the present on 61 populations across 14 species and is the first publicly searchable and standardised database on affiliative and agonistic animal social behaviour. We describe the establishment of MacaqueNet, from the steps we took to start a large-scale collective, to the creation of a cross-species collaborative database and the implementation of data entry and retrieval protocols. We share MacaqueNet's component resources: an R package for data standardisation, website code, the relational database structure, a glossary and data sharing terms of use. With all these components openly accessible, MacaqueNet can act as a fully replicable template for future endeavours establishing large-scale collaborative comparative databases. BT - Journal of Animal Ecology DA - 2025/02/11/ DO - 10.1111/1365-2656.14223 DP - Wiley Online Library IS - n/a LA - en N2 - There is a vast and ever-accumulating amount of behavioural data on individually recognised animals, an incredible resource to shed light on the ecological and evolutionary drivers of variation in animal behaviour. Yet, the full potential of such data lies in comparative research across taxa with distinct life histories and ecologies. Substantial challenges impede systematic comparisons, one of which is the lack of persistent, accessible and standardised databases. Big-team approaches to building standardised databases offer a solution to facilitating reliable cross-species comparisons. By sharing both data and expertise among researchers, these approaches ensure that valuable data, which might otherwise go unused, become easier to discover, repurpose and synthesise. Additionally, such large-scale collaborations promote a culture of sharing within the research community, incentivising researchers to contribute their data by ensuring their interests are considered through clear sharing guidelines. Active communication with the data contributors during the standardisation process also helps avoid misinterpretation of the data, ultimately improving the reliability of comparative databases. Here, we introduce MacaqueNet, a global collaboration of over 100 researchers (https://macaquenet.github.io/) aimed at unlocking the wealth of cross-species data for research on macaque social behaviour. The MacaqueNet database encompasses data from 1981 to the present on 61 populations across 14 species and is the first publicly searchable and standardised database on affiliative and agonistic animal social behaviour. We describe the establishment of MacaqueNet, from the steps we took to start a large-scale collective, to the creation of a cross-species collaborative database and the implementation of data entry and retrieval protocols. We share MacaqueNet's component resources: an R package for data standardisation, website code, the relational database structure, a glossary and data sharing terms of use. With all these components openly accessible, MacaqueNet can act as a fully replicable template for future endeavours establishing large-scale collaborative comparative databases. PY - 2025 SN - 1365-2656 ST - MacaqueNet T2 - Journal of Animal Ecology TI - MacaqueNet: Advancing comparative behavioural research through large-scale collaboration UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2656.14223 VL - n/a Y2 - 2025/02/18/07:05:24 ER -